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Abstract

Experimental durability tests were performed on
carburized and ground AISI 9310 steel face gears.  The
tests were in support of a Defense Advanced Research
Projects Agency (DARPA) Technology Reinvestment
Program (TRP) to enhance face-gear technology.  The
tests were conducted in the NASA Glenn spiral-bevel-
gear/face-gear test facility.  Tests were run at 2300 rpm
face gear speed and at loads of 64, 76, 88, 100, and
112-percent of the design torque of 377 N-m
(3340 in-lb). The carburized and ground face gears
demonstrated the required durability when run for ten-
million cycles at each of the applied loads.  Proper
installation was critical for the successful operation of
the spur pinions and face gears.  A large amount of
backlash produced tooth contact patterns that
approached the inner-diameter edge of the face-gear
tooth.  Low backlash produced tooth contact patterns
that approached the outer-diameter edge of the face-
gear tooth.  Measured backlashes in the range of
0.178 to 0.254 mm (0.007 to 0.010 in) produced
acceptable tooth contact patterns.

Introduction

Designers are constantly searching for ways to reduce
rotorcraft drive system weight.  Reduced weight can
increase payload, performance, or power density of
current and future systems. One example of helicopter
transmission weight reduction was initiated as part of
the United States Army Advanced Rotorcraft
Transmission program.  This example used a split-
torque, face-gear configuration concept [1].  Compared
to a conventional design with spiral-bevel gears, the
split-torque, face-gear design showed substantial
weight savings benefits.  Also, the use of face gears
allows a wide range of possible configurations with
technical and economic benefits [2].

Historically, face gears have been used to transfer
light loads or angular motion between intersecting
shafts (usually at right angles) such as in positioning
mechanisms.  Standards [3] as well as examples of
research contributions [4] exist for this type of
application.  There is, however, a lack of experience
with respect to design guidelines, stress allowables,
and manufacturing capabilities for face-gear use in
high-speed, high-load, applications such as helicopter
rotor drive systems.  Recent studies have been
performed to advance the analytical capabilities
relating to face-gear design [5-8].  These studies
considered face-gear geometry, size limitation
factors, tooth contact analysis, kinematics, and
transmission error analysis.  Experimental testing has
also been performed to demonstrate feasibility and
investigate failure modes of shaper-cut face gears
[9-10].  These studies identified the need for face
gears made from high-strength, carburized steels in
order to obtain the required durability when subjected
to a high-speed, high-load environment.  When using
carburized steels, there is a requirement to grind the
gears to compensate for heat treatment distortion in
order to obtain high-accuracy tooth geometry.
However, there is currently no machine available that
will grind face gears.

A new initiative has begun in Europe to investigate
and advance the use of face gears in aerospace
transmissions [11].  In the United States, a Defense
Advanced Research Projects Agency (DARPA)
Technology Reinvestment Program (TRP) was
established to further enhance face-gear technology.
The objective of the DARPA program is to develop a
grinding procedure for face gears as well as design
and demonstrate the proof-of-concept of a
concentrically-arranged split-torque, face-gear
transmission configuration [12].  A grinding

Copyright  1999 by the American Helicopter Society, Inc.  All rights reserved.
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procedure was developed based on a continuous
grinding method using a worm grinding wheel.
Prototype carburized and ground AISI 9310 steel face
gears were fabricated as part of this program.

The objective of this work is to describe the
preliminary results of the experimental tests
performed on the carburized and ground AISI 9310
steel face gears.  Face gears were tested in the NASA
Glenn spiral-bevel-gear/face-gear facility. Basic face-
gear design, test facility, setup procedures, testing
procedures, and test results are described.

Face Gear Applications in Helicopter
Transmissions

Figure 1 shows the split-torque, face-gear
transmission developed during the U.S. Army
Advanced Rotorcraft Transmission (ART)
program [1].  For this configuration, an involute spur

gear drives both an upper face gear and lower face
gear.  These face gears are connected to spur gears
which drive a large bull gear.  By splitting the power
flow in these two paths, smaller components can be
utilized which leads to reduced weight.  Compared to
spiral-bevel gears, face gears allow the use of a
simpler, less expensive, involute spur pinion. In
addition, the pinions do not produce axial forces and
have less axial misalignment restrictions than spiral-
bevel gears.  It was estimated that a 40-percent
weight reduction resulted from the split-torque, face-
gear design compared to a conventional design.  The
conventional design weight used for comparison
above was based on a parametric upscale of
transmission design technology existing at that time.

A design configuration which can be installed in
existing aircraft much more readily than the
preceding ART design is shown in Figure 2.  This is

a concentric, split-torque, face-gear design developed
during the DARPA Technology Reinvestment
Program [12].  This reduced-scale test gearbox will
be used in proof-of-concept test evaluations.  For this
concept, an involute spur gear also drives a pair of
face gears and the power flow is split in two.  For the
upper face gear, the power flow is direct from the
input spur gear to the face gear.  For the lower face
gear, however, the power flow is from the input spur
gear through the lower face gear, to an idler spur
gear, and then the upper face gear. This configuration
allows a large power capacity in a relatively small
package.  Assuming a full size production design,
this concept has an estimated weight savings of
25-percent compared to a modern technology
conventional design.  These two examples show the
potential benefits for the use of face gears in
helicopter transmissions.

Test Facility

The experiments reported in this report were tested in
the NASA Glenn spiral-bevel-gear/face-gear test
facility.  An overview sketch of the facility is shown
in Figure 3a and a schematic of the power loop in
shown in Figure 3b.  The facility operates in a closed-
loop arrangement.  A spur pinion drives a face gear in
the test (left) section.  The face gear drives a set of
helical gears, which in turn, drive a face gear and
spur pinion in the slave (right) section.  The pinions

Spur gear
Face gears

Figure 1.   Split-torque, face-gear transmission from ART
program [1].

Input spur gear
(quantity 2)

Face gears (upper & lower)

Figure 2.   Split-torque, face-gear transmission from TRP
program [12].

Idler spur gear
(quantity 2)
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of the slave and test sections are connected by a cross
shaft, thereby closing the loop.  Torque is supplied in
the loop by a thrust piston which exerts an axial force
on one of the helical gears.  A 75-kW (100-hp) DC
drive motor, connected to the loop by V-belts and
pulleys, controls the speed as well as provides power
to overcome friction.  The facility has the capability
to operate at 560 kW (750 hp) and 20,000 rpm pinion
speed.  A torquemeter in the loop measures torque
and speed.  The facility is also equipped with
thermocouples, oil flow meters, pressure transducers,
and accelerometers.

The gears and bearings of the facility are lubricated
and cooled by a pressurized oil system. The
lubricating fluid used was a synthetic base helicopter
transmission oil conforming to the DOD-L-85734
specification.  The test pinions and face gears were
lubricated by jets which radially directed oil into the
roots of the teeth on both the into-mesh and out-of-
mesh sides.  The nominal oil supply pressure was
552 KPa (80 psi) and the nominal flow rate was
2.6 l/min (0.7 gpm) for both the test section and slave
section.  Oil inlet temperature was set at 74 °C

(165 °F).  In addition, the oil system was equipped
with a chip detector as well as a three-micron filter.

Face Gear Grinding Setup

The face gears used in the current tests were
precision ground using a true generating method.
The goal was to produce face gears having a quality
of American Gear Manufacturers Association
(AGMA) Class 12 or better.  The method used
employed a worm thread grinding wheel to generate

the face gear teeth in a setup similar to that shown in
Figure 4.  The worm wheel rotational axis was
located perpendicular to the face gear axis at an offset
distance.  During grinding, the worm rotated about its
axis as it translated across the face gear teeth along a
nearly radial line.  The translation was at a small
angle to the true radial line and related to the lead
angle of the worm.  The face gear work piece also
rotated slowly during grinding so that all teeth were
generated synchronously after multiple turns of the
face gear as the grinding worm slowly translated
inward.  An effective method of redressing the
grinding wheel (without tooth undercutting) during
the above process was also developed.

The face gears were ground on a four-axis machine
incorporating the basic setup described above.  The
first development gears experienced grinding burns as
process parameters were being adjusted.  Other
difficulties included tooth facets and rough surface
finishes. Eventually, face gears of AGMA Class 11
quality were made for the tests.  The experience with
the setup used validated the process but indicated that
a better machine is required to obtain the gear quality
needed.  Deficiencies encountered included limited
machine grinding speed, excessive machine
deflections, and control-loop errors inherent in older
vintage machines.  The machine capability for making
larger face gears (desired for aerospace use) was
limited as well.  Current work is underway to develop
a full CNC five-axis grinding machine for face gears.

Pinion

Face gear

Figure 4.   Face-gear grinding setup.

Grinding
worm

Dressing
toola) Overview of facility.

Figure 3.   NASA Glenn spiral-bevel-gear / face-gear
test facility.

b) Schematic view.

Face gear
test section

Face gear
slave section

Torquemete

Thrust
piston

Drive
motor
pulley

Helical
gears
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Test Gears

The design parameters for the pinions and face gears
used in the tests are given in Table 1.  A photograph
of the test specimens is shown in Figure 5.  This set
was a hybrid between the ART program design and
the TRP design.  The set had a module of 2.54 mm
(diametral pitch of 10 teeth/in) and a reduction ratio
of 4.059:1.  The face width of the face gears was
15.7 mm (0.620 in).  The face width of the spur
pinions was 32.6 mm (1.285 in). The shaft angle was
90 deg to accommodate the facility.  The pinions
were made from carburized and ground AISI 9310
steel using standard aerospace practices.  The face
gears were made from the same material and
manufactured using the grinding procedure
previously mentioned.

Table 1 .  Test Gear Design Data
AGMA quality; desired, achieved ................. 12, 11
Number of teeth; pinion, face gear ............... 17, 69
Module (mm) ................................................ 2.54
Pressure angle (deg) ................................... 27.5
Shaft angle (deg) ......................................... 90
Face width (mm); pinion, face gear .............. 32.6, 15.7
Hardness (Rc); pinion and face gear ............ 58-62
RMS surface finish (µm) .............................. 0.4
AGMA pinion bending stress (MPa); index,
allowable ...................................................... 210, 450
AGMA contact stress (MPa); index,
allowable ...................................................... 1170, 1380
Material ................ Carburized and ground AISI 9310 steel

The 100-percent design torque for the face gears was
defined as 377 N-m (3340 in-lb).  This produced the
same magnitude of contact stress as the face gears of
the TRP concentric, split-torque transmission
configuration at it’s 100-percent design load [12].
For the test gears, the calculated contact stress at
377 N-m torque was 1170 MPa (170 ksi) based on

Hertz theory.  The calculated pinion bending stress at
377 N-m torque was 210 MPa (30 ksi) based on
standard AGMA calculations and using an effective
face-gear face width.  The allowables stated in the
table are those commonly accepted for AISI 9310
carburized and ground spur gears.

Due to the manufacturing problems previously
mentioned, the face gears actually produced by the
grinding procedure described above were not up to
aerospace quality standards. The teeth had a

relatively poor surface finish as well as faceted areas
(Figure 6).  In order to improve the surface finish, the
teeth were subjected to a super-finish process [13].
In this process, the gears were immersed in a
container of small zinc chips, water, and aluminum
oxide powder.  The container was vibrated for a
number of hours and the grade of oxide powder was
increased in fineness in several stages.  Figure 7
shows a face gear after such a process.  Although

actual surface roughness measurements for the face
gears tested were not available at the time, it was
reported in [13] that a four to six-times improvement
in surface finish was achieved on those specific gears
studied.

Figure 5.   Test spur pinion and face gear.

Figure 6.   Development problems with initial ground
face gear.

Poor surface finish

Facets

Figure 7.   Super-finished face gear.
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Test Gear Installation Procedures

Although not as stringent as for spiral-bevel gears,
proper pinion and face gear installation is crucial for
successful operation.  The installation procedure for
the gears tested was as follows.  First, the test-side
pinion and face gear were installed in the facility
(with no cross shaft connected to the pinion).  The
pinion was locked to ground and backlash
measurements were taken for the mesh. A dial
indicator was installed at the center of the face gear
tooth, the face gear was manually rotated back and
forth, and the backlash was recorded. After
completion, marking compound was applied to the
pinion and face gear teeth.  No-load contact pattern
checks were performed by manually rotating the
pinion/face-gear assembly.  If necessary, the shim
located behind the face gear, which moves the face
gear in the axial direction, was adjusted to achieve
the proper backlash and contact pattern.  This process
was then repeated for the slave-side pinion/face-gear
mesh.  After proper shimming was achieved, the
cross shaft was installed.  Marking compound was
then re-applied to all the pinions and gears and a
loaded static roll test was performed.  This was done
by applying a moderate torque in the loop, manually
rotating the complete assembly, and photographing
the contact patterns.  Figure 8 shows a typical
example of a tooth contact pattern check for a loaded
static roll test.  Again, the objective of this procedure

was to ensure the proper shimming to produce a tooth
contact pattern that was centered on the pinion and
face-gear teeth in order to avoid edge loading.

At the start of the project, it was unclear as to the
proper value of shim that would produce the required
backlash and contact pattern.  To gain experience, a
study was conducted to determine the effect of
shimming on backlash and contact pattern. Here,
various shims were installed while backlash and
pattern checks were measured for the test and slave
sections using the procedure described above.
Figure 9 documents the effect of shimming on
backlash.  It should be noted that there was some

variability in the backlash measurement. Overall,
there appeared to be a linear relationship between
shimming and backlash for the selected range
presented.  Figure 10 shows the effect of backlash on
tooth contact pattern.  The results depicted are for the
test side, but a similar trend resulted for the slave side
also. Note that the figure contains hand-drawn
sketches of the contact pattern.  The purpose is not to
quantitatively define the required magnitude of
backlash, but to show an important trend in the
installation process. If the backlash is too loose
(higher number), the tooth contact approaches the
inner-diameter edge of the face gear, possibly leading
to edge contact. If the backlash is too tight (lower

Figure 8.   Typical tooth contact pattern checks from
loaded static roll tests during installation.

a) Pinion.

b) Face gear.
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Figure 9.   Effect of face-gear shimming on tooth
backlash.
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number), the tooth contact approaches the outer-
diameter edge of the face gear, again possibly leading
to edge contact.  In addition, the clearance between
the pinion and face gear could be critically reduced
when the gears reach operating temperature if the
backlash is too tight.  This could result in jamming,
coast-side contact, or scoring failure.  From the
experience of the tests performed, backlash in the
range of 0.178 to 0.254 mm (0.007 to 0.010 in)
produced acceptable tooth contact patterns.

Test Procedure

A total of five endurance tests are reported in this
work.  The test operating conditions are listed in
Table 2.  The objective of the tests was to
demonstrate that carburized and ground face gears
would achieve the required durability when subjected
to high-load helicopter transmission conditions.  At
the start of the project, extensive modal surveys of
the test facility were conducted as well as speed
sweeps with the test hardware installed.  From these
studies, a face gear speed of 2300 rpm was selected
as the test condition to avoid any speeds that could
contain facility-resonant dynamic loads.  Test gear
loads of 64, 76, 88, 100, and 112-percent design
torque were run for ten-million face-gear cycles each.

The same test-side face gear was used for all of the
runs (serial number (S/N) 2-2).  Similarly, the same
slave-side face gear was used (S/N 2-4).  These were
carburized, ground, and super-finished face gears.
Since the pinions accumulated over four times the
number of cycles as the face gears, the pinions were
replaced after each higher load condition to minimize
the chance of a pinion failure causing face-gear tooth
distress.  Based on this, the pinions for both the test
and slave sides were replaced after the 88 and
100-percent load tests.  The original pinions
(S/N's L5-12 and L5-5) were carburized, ground, and
super-finished, while the subsequent ones used were
only carburized and ground.

At the start of each test, the gears were installed as
discussed in the previous section.  They were then
run for a break-in period which consisted of a gradual
increase in speed and torque.  After the break-in, the
gears were visually inspected then run per the
specified test condition.  Facility parameters such as
speed, torque, oil flow, oil pressure, temperatures,
and vibration were monitored throughout the test.
After completion of ten-million face-gear cycles, the
gears were removed from the rig, inspected (visual
and magnetic particle), and photographed.

Results and Discussion

Figure 11 shows typical vibration spectrums from the
tests. The spectrums were produced from high-
frequency piezoelectric accelerometers mounted on top
of the pinion housings near the pinion/face-gear meshes.
One was mounted on the test side and one on the slave
side. The accelerometers had integral electronics, a
typical sensitivity of 10 mV/g, and a resonance
frequency of 90 kHz.  From the spectrum, the major
sources of vibration were from the pinion/face-gear
fundamental meshing and harmonic frequencies.

Figure 12 gives the maximum vibration as a function
of run time for all the tests.  The maximum vibration
is defined as the maximum value of the spectrum,
and usually occurred at the pinion/face-gear
fundamental meshing frequency.  Note that the
vibration was rather sporadic during the tests.  This is

Table 2 .  Test operating conditions.
Test section Slave section

Test No.
Face-gear

speed (rpm)
Face-gear

torque (N-m)
Pinion,

million cycs
Face-gear,
million cycs

Pinion
S/N

Face-gear
S/N

Pinion
S/N

Face-gear
S/N

1 2300 242 (64%) 40.6 10.0 L5-12 2-2 L5-5 2-4
2 2300 287 (76%) 40.6 10.0 L5-12 2-2 L5-5 2-4
3 2300 332 (88%) 40.6 10.0 L5-12 2-2 L5-5 2-4
4 2300 377 (100%) 40.6 10.0 L5-11 2-2 L5-9 2-4
5 2300 424 (112%) 40.6 10.0 1 2-2 2 2-4

Figure 10.   Effect of face-gear shimming and backlash
on tooth contact pattern (test side face gear).

0.076-mm
backlash

0.140-mm
backlash

0.196-mm
backlash

Contact
pattern

toe heel

tip



NASA/TM—1999-209188 7

not uncommon for vibration of high-speed
machinery.  Also, there appeared to be no definite
trend of vibration with torque.  This is consistent with
previous studies performed on helicopter
transmissions [14, 15].  From Figure 12b, a
significant reduction in vibration for the slave side
occurred at 20 million cycles.  This was probably due
to the replacement of a failed pinion shaft support
bearing at the end of test 2.  Also, significant changes
in vibration occurred at 30 and 40 million cycles for
both the test and slave sides (Figures 12a and 12b).
This was probably due to installation of replacement
pinions for tests 4 and 5.

At the end of tests 1 and 2 (242 N-m, 64-percent
design torque, and 287 N-m, 76-percent design
torque, respectively), there was no noticeable wear on
any of the spur pinions or face gears.  At the end of
test 3 (332 N-m, 88-percent), the pinions had very
light wear but the face gears exhibited no noticeable
wear.  The pinion teeth on the slave side had wear
lines where the pinion meshed with the face-gear
outer-diameter region.  This was possibly caused by
debris from the pinion shaft support bearing failure.

At the end of test 4 (377 N-m, 100-percent), the
replacement pinions had a slight increase in the
amount of wear compared to the pinions from test 3.
Concentrated wear on the pinion teeth was noticed as
diagonal lines on the teeth corresponding to the
location of the pitch line.  The face gears, however,

had less noticeable wear than the pinions. Slight wear
lines were noticed that appeared to correspond with
the edges of the facets on the teeth.

At the end of test 5 (424 N-m, 112-percent), the
replacement pinions had again, a slight increase in
the amount of wear compared to the pinions from
test 4.  This was expected due to the increased
applied load.  Slight wear lines were apparent near
the pitch line as well as edge lines where the pinion
meshed with the face-gear inner-diameter and outer-
diameter regions.  The marks corresponding to the
face gear outer-diameter region were attributed to a
few burrs on the face-gear outer-diameter edge,
probably caused during hardware assembly. Slight
scratching appeared at the tooth tips. Overall,
however, relatively little wear was noticed. The face
gears had even less noticeable wear than the pinions.
As stated before, slight wear lines were noticed that
appeared to correspond with the edge of the facets on
the teeth.  At this time, the effect of the facets on
durability and performance are not known. Also,
minor scratching was exhibited on the face gears near
the outer-diameter tip region.  Figure 13 depicts the
wear after test 5. Aside from minor wear line
situations, the pinions and, especially the face gears,
had no significant wear problems or failure modes.
(Note that the wear of the pinions in Figure 13 is just
the removal of the black-oxide.)  Thus, from the tests,
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the carburized and ground face gears demonstrated
the required durability when subjected up to
112-percent design torque.  Further tests are planned
to increase the applied torque and determine the load
capacity of the face gears.

Conclusions

Experimental durability tests were performed on
carburized and ground AISI 9310 steel face gears.
The tests were conducted in the NASA Glenn spiral-
bevel-gear/face-gear test facility.  Tests were run at
2300 rpm face gear speed and at loads of 64, 76, 88,
100, and 112-percent of the design torque of
377 N-m (3340 in-lb) at ten-million face-gear cycles
each.  The following conclusions were made:

1) Carburized and ground face gears demonstrated
the required durability when run for ten-million
cycles at loads of 64, 76, 88, 100, and
112-percent of the design torque.  Other than
wear lines caused by isolated situations, the spur
pinions and face gears had no significant wear
problems or failure modes.

2) Proper installation was critical for the successful
operation of the spur pinions and face gears.
Backlash too high produced tooth contact
patterns that approached the inner-diameter edge
of the face-gear tooth.  Backlash that was too
low produced tooth contact patterns that
approached the outer-diameter edge of the face-
gear tooth.  Measured backlashes in the range of
0.178 to 0.254 mm (0.007 to 0.010 in) produced
acceptable tooth contact patterns.

3) From spectrum readings taken during the tests,
the major source of vibration was from the
pinion/face-gear fundamental meshing frequency
and harmonics.  Also, there was no definite trend
of vibration with torque.
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